Unsupervised Modeling of Latent Topics and Lexical Units in Speech Audio

نویسندگان

  • David F. Harwath
  • Timothy J. Hazen
  • Leslie Kolodziejski
چکیده

Zero-resource speech processing involves the automatic analysis of a collection of speech data in a completely unsupervised fashion without the benefit of any transcriptions or annotations of the data. In this thesis, we describe a zero-resource framework that automatically discovers important words, phrases and topical themes present in an audio corpus. This system employs a segmental dynamic time warping (S-DTW) algorithm for acoustic pattern discovery in conjunction with a probabilistic model which treats the topic and pseudo-word identity of each discovered pattern as hidden variables. By applying an Expectation-Maximization (EM) algorithm, our method estimates the latent probability distributions over the pseudo-words and topics associated with the discovered patterns. Using this information, we produce informative acoustic summaries of the dominant topical themes of the audio document collection. Thesis Supervisor: James R. Glass Title: Senior Research Scientist Thesis Supervisor: Timothy J. Hazen Title: Principal Scientist, Microsoft

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Acoustic and lexical resource constrained ASR using language-independent acoustic model and language-dependent probabilistic lexical model

One of the key challenges involved in building statistical automatic speech recognition (ASR) systems is modeling the relationship between subword units or “lexical units” and acoustic feature observations. To model this relationship two types of resources are needed, namely, acoustic resources i.e., speech data with word level transcriptions and lexical resources where each word is transcribed...

متن کامل

Latent Topic Modeling for Audio Corpus Summarization

This work presents techniques for automatically summarizing the topical content of an audio corpus. Probabilistic latent semantic analysis (PLSA) is used to learn a set of latent topics in an unsupervised fashion. These latent topics are ranked by their relative importance in the corpus and a summary of each topic is generated from signature words that aptly describe the content of that topic. ...

متن کامل

Unsupervised Latent Speaker Language Modeling

In commercial speech applications, millions of speech utterances from the field are collected from millions of users, creating a challenge to best leverage the user data to enhance speech recognition performance. Motivated by an intuition that similar users may produce similar utterances, we propose a latent speaker model for unsupervised language modeling. Inspired by latent semantic analysis ...

متن کامل

L2 Learners’ Lexical Inferencing: Perceptual Learning Style Preferences, Strategy Use, Density of Text, and Parts of Speech as Possible Predictors

This study was intended first to categorize the L2 learners in terms of their learning style preferences and second to investigate if their learning preferences are related to lexical inferencing. Moreover, strategies used for lexical inferencing and text related issues of text density and parts of speech were studied to determine their moderating effects and the best predictors of lexical infe...

متن کامل

Latent Dirichlet Allocation with Topic-in-Set Knowledge

Latent Dirichlet Allocation is an unsupervised graphical model which can discover latent topics in unlabeled data. We propose a mechanism for adding partial supervision, called topic-in-set knowledge, to latent topic modeling. This type of supervision can be used to encourage the recovery of topics which are more relevant to user modeling goals than the topics which would be recovered otherwise...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013